Creating Neural Networks for Battery Fault Detection and Predictive Modeling

Introduction

The creation of a digital twin for battery systems involves multiple technical components, including
data collection, fault detection algorithms, and predictive modeling. Below paragraphs delves into
the intricate details of these components, with a particular emphasis on data collection, neural
network development for fault detection, and the utilization of LSTM networks for predictive
modeling.

Data Collection

e Dataset Selection
A comprehensive and well-curated dataset forms the foundation of a robust digital twin.
Hence, an extensive and diverse dataset was meticulously collected, encompassing various
scenarios such as "typical battery operation," "varied fault types," and data obtained from
different spatial locations within the battery system. This meticulously compiled dataset
further includes data from multiple sources, including battery management systems,
integrated sensors, and historical records. These sources provide a multifaceted array of
parameters, including voltage, current, temperature, state of charge, and capacitance,
resulting in a rich and varied dataset for analysis.

(] & K L M Q P Q R s

40545/
40545
4.0547]
4,058
40549
4,059
4,059
4.0549]
4.0549)
40549
40549
40549

2 _0.0334] 0.0394] 0.0394] 5 T 2.0815] 4.0419] 4.0419
3 00785 0.0785| Y 4.0819] 4.0419) 4.0419] 2.0419)
01171 0.1171] 40419
0.1553| 0.1553] 0.1553] 40419
01931 0.1%31] 40419
a.0019] 4

12 . 0.6135]
0.6433)

14 0.5432] 0.6432] 0.6432]
15 0.9182] 0.9182] 0.5182)
11695| 1.1695|

40519
40549
40549
4,059
4,059

Labeled Outputs

4.0549]
4.0549)
40549

4055/

4055/
40551}
40551}
40552
4,0553]
4.0554]
4.0554]
40555/
A0sA

2 2.3234]
23] 28657 2.4657] 2.4657]
24 2500 2.5944] 2.5544]
25 277 2772 2772

2.9246] 2.9246] 2.

4.0418] 4.0818] A
4.0418] 2.0218] A

Figl. Collection of labelled datasets
o aoasal 2 aset 2 BN sl owal—oi 2 oM -l el s a2
e Data Understanding

Once all data are collected, a profound understanding of the data and the identification of
critical patterns is employed. Using differential analysis and correlation analysis, we examined
the relationship between various parameters and the output labels. The correlation analysis,
utilize statistical techniques to quantify the degree to which two variables are associated. The
differential analysis observes how variations in one parameter relate to changes in another.




Neural Network Model
The development of the neural network model is a pivotal stage in the creation of a digital twin for
battery system. The neural network architecture begins with careful consideration of the input
features, output features and hidden layers as hyperparameters to improve accuracy. For this
battery, we selected the 4 voltmeters and the general voltage and current of the battery as the input
layers. Through the hidden layers, features are extracted to predict the output. The model is
constantly trained by configuring the hidden layers to improve the accuracy of prediction to be high
as possible.

Voltmeter values

Time

Ammeter values

Hidden Layers

Epoch: @ and loss: 1.28187644481685894
Epoch: 18 and loss: 8.9%368725419844455
Epoch: 28 and loss: @.726G0675663948859
Epoch: 28 and loss: 8.5271393262684204
Epoch: 42 and loss: 8,48208422229766845
Epoch: 52 and loss: 8.291813E8588457224
Epoch: &2 and loss: 8.17814527451992835
Epoch: 7@ and loss: 8.18713918527299152
Epoch: 82 and loss: 8.0874c6668439368183
Epoch: 92 and loss: 8.086249254559411278
Epoch: 182 and loss: B.857E933473348581755
Epoch: 118 and loss: @,@5548G525719212532
Epoch: 122 and loss: @8.85422917753458823
Epoch: 122 and loss: 8,853353515954934894
Epoch: 122 and loss: 9.852742894258573519
Epoch: 152 and loss: B8.85219383871498571
Epoch: 162 and loss: @.851637698514326895
Epoch: 172 and loss: B8.851284783748226166
Epoch: 182 and loss: 9.852815418358268174%9
Epoch: 1%2 and loss: B.8S8437215715845744
Epoch: 288 and loss: @,85218093595559597
Epoch: 212 and loss: B.85883581568598747
Epoch: 222 and loss: B,84948898832387625
Epoch: 232 and loss: 9.84328515115555435
Epoch: 248 and loss: B,843997938632955089
Epoch: 252 and loss: B8.84887254163622856
Epoch: 262 and loss: 8,848544185142354965
Epoch: 272 and loss: &, A4545538945595738
E Running Epochs Accuracy




Algorithm Development

An algorithm is meticulously formulated based on the discerned pattern within the dataset
compilation. The algorithm adapts and processes any incoming unlabeled data, enabling the
prediction of the battery’s status, alongside the identification of fault type and its precise location
within the battery. This approach is called a “Rule-Based Algorithm”. After getting a clear
understanding of the cause-and-effect relationships within the battery system, an algorithm is
created so that the probability of false prediction is highly unlikely.
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Predictive Modeling with LSTM

e About LSTM
LSTM stands for Long Short-Term Memory, which is a type of Recurrent Neural Network. This
model is well suited for handling time-series data as it captures long-term dependencies.
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e Data Preparation
In the realm of predictive modelling, the focus is primarily on data representing normal

battery operation of a working battery. This data is meticulously preprocessed to suit the

requirements of LSTM networks.
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The training data is input as n batches, and it is trained to predict the next value (n +1). The
number n is decided after several runs to get better accuracy.
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941 0.88333333 .0
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Data 10 Data 10 Data 10 == Assigning batches
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e Training and Optimization
The LSTM model is trained using the preprocessed dataset, with a specific emphasis on its
capacity to predict future values of a healthy battery. The predictive accuracy of this model is
enhanced by tuning in the hyperparameters, mainly the batch size and the learning rate.
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e Evaluation and Validation
The performance of the LSTM model is evaluated and compared with the original dataset for
comparison.
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